CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Nếu a 3 / 3 > a 2 / 2 và log b ( 3 / 4 ) < log b ( 4 / 5 ) thì:
A. 0 < a < 1, b > 1 B. 0 < a < 1, 0 < b < 1
C. a > 1, b > 1 D. a > 1, 0 < b < 1
Trong không gian Oxyz, cho ba điểm A (-1; 0; 1), B (3; 2; 1), C (5; 3; 7). Gọi M (a; b; c) là điểm thỏa mãn MA = MB và MB + MC đạt giá trị nhỏ nhất. Tính P = a + b + c
A. P = 4
B. P = 0
C. P = 2
D. P = 5
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
Cho A(1; -2; 1), B(0; -1; 3), C - 2 ; 0 ; 4 , D(0; 2; -2). Gọi (P) là mp chiếu A, B và (P) cách đều C, D. Biết C, D thuộc 2 phía của (P). Tìm một vectơ pháp tuyến của (P).
Trong không gian Oxyz, cho mặt cầu S : x - 3 2 + y - 2 2 + z 2 = 4 và 2 điểm A(-1;2;0), B(2;5;0). Gọi K(a;b;c) là điểm thuộc (S) sao cho KA+2KB nhỏ nhất. Giá trị a-b+c bằng
Trong không gian Oxyz, cho hai điểm A(1;-1;2),B(3;-4;-2)và đường thẳng
d : x = 2 + 4 t y = - 6 t z = - 1 - 8 t . Điểm I(a,b,c) thuộc d là điểm thỏa mãn IA + IB đạt giá trị nhỏ nhất. Khi đó T = a + b + c bằng
A. 23 58
B. - 43 58
C. 65 29
D. - 21 58
Cho ba vectơ: a → = (2; -5; 3), b → = (0; 2; -1), c → = (1; 7; 2) Tính tọa độ của vectơ d → = 4 a → - 1/3 b → + 3 c →
Trong không gian Oxyz cho ba vecto a → = (2; −1; 2), b → = (3; 0; 1), c → = (−4; 1; −1). Tìm tọa độ của các vecto m → và n → biết rằng: m → = 3 a → − 2 b → + c →