Cho các số nguyên a,b,c khác 0 thỏa mãn điều kiện :\(\frac{5b+2\left(4+c^6\right)}{a+b+c}=1\\\).\(CM:a^7+3b^7-2c⋮7\)
a)Cho \(a,b,c,d\in Z^+\)thỏa:a2+b2=c2+d2
Cm:a+b+c+d là 1 hợp số
b)Cho \(a,b,c,d\in Z^+\)thỏa ab=cd
Cm:A=an+bn+cn+dn là hợp số với mọi \(n\in N\)
cho `a,b,c>0,a^2+b^2+c^2=3.CM:a/b+b/c+c/a>=9/(a+b+c)`
Giúp với....
cho a,b>0 thỏa mãn a+b≤1.Tìm GTNN của biểu thức
P=\(a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)
CM:a)\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}< 2\left(\sqrt{a}-\sqrt{b}\right)biet:a=b+1=c+2\left(c>0\right).\)
b)\(CM:B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}nguyen\)
Cho a,b>0 thỏa mãn \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\). Tính max P =\(\dfrac{1}{a^4+b^2+2ab^2}+\dfrac{1}{b^4+a^2+2ba^2}\)
cho a,b,c khác 0 thỏa mãn a^2017 b^2017 c^2017=1; a^2(b c) b^2(c a) c^2(a b) 2abc =0 tính 1/a^2017 1/b^2017 1/c^2017
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
cho 3 số a b c thỏa mãn a+b+c=0 và -1<a<=b<=c<1. chúng minh a^2+b^2+c^2 < 2