Giải hộ t bài này (đáng tiếc thầy giáo k cho dùng cauchy ức chế vãi linh hồn, đừng ai dùng cauchy nhé)
Cho a,b,c > 0. CMR
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+a\right)\left(c^2+a^2\right)}\ge\frac{a+b+c}{4}\)
Bài 1 Cho a+b=-3, ab=-2. Hãy tính giá trị của
a^2+b^2, a^4+b^4, a^3+b^3, a^5+a^5, a^7+a^7
Bài 2 Cho a+b=5, ab=-2(a<b). Hãy tính a^2+b^2, \(\dfrac{1}{a^3}+\dfrac{1}{b^3}\),a-b, a^3-b^3
Bạn nào bik dùng HĐT phụ thì giúp mình nhé
Chứng minh các đẳng thức sau: (nhớ dùng các hằng đẳng thức 1,2,3,4 hoặc 5 nha)
1) a^3+b^3+c^3-abc= (a+b+c).(a^2+b^2+c^2-ab-bc-ca)
2) a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc= (a+b).(b+c).(c+a)
3) Cho a+b+c=0. Chứng minh: a^3+b^3+c^3=3abc
Các bạn giải rõ cho mình tí, đừng làm tắt nhiều quá, cảm ơn. Ai nhanh tớ tích cho nha, làm từng câu cũng đc.
Cho a,b,c > 0 ; a+b+c ≤ 1. Tìm GTNN của P= a+b+c+1/a+1/b+1/c
(Nếu có thể dùng Cosi giúp mình nhé.)
Cho các số nguyên a,b,c . Chứng minh rằng :
a, Nếu a + b + c chia hết cho 6 thì \(a^3+b^3+c^3⋮6\).
b, Nếu a + b + c chia hết cho 30 thì \(a^5+b^5+c^5⋮30\) .
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
ai có thể cho mk biết những bài tìm a,b,c dùng = máy tính cầm tay đc ko??? VD như tek này:
tìm a,b,c:
-3x^3(2ax^2-bx+c)=-6x^5+9x^4-3x^2 với mọi x...
hãy tính = máy tính cầm tay...
Cho a,b,c là số nguyên. CMR: Nếu a+b+c chia hết cho 30 thì a^5+b^5+c^5 chia hết cho 30
Chứng minh rằng nếu a+b+c=0
Thì 2(a5 + b5 + c5) = 5abc ( a2 + b2 + c2)
\(\)a. Chứng minh rằng nếu các số dương a,b,c có tổng: a+b+c=1 thì:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
b. Cho các số a,b,c thỏa mãn điều kiện a+b+c=0. Chứng minh rằng:
2(a5+b5+c5)=5abc(a5+b5+c5)