Để \(\overline{a378b}⋮4\) thì \(b\in\left\{0;4\right\}\) (vì \(a\ne8\))
*) b = 0:
\(a+3+7+8+0=a+18\)
Để \(\left(a+18\right)⋮3\) thì \(a⋮3\)
\(\Rightarrow a=6;a=9\) (vì \(a\ne0;a\ne3\))
*) b = 4
\(a+3+7+8+4\)\(=a+3+7+8+4=a+22\)
\(=a+1+21\)
Để \(\overline{a378b}⋮3\) thì \(\left(a+1\right)⋮3\)
\(\Rightarrow a+1\in\left\{0;3;6;9\right\}\)
\(\Rightarrow a\in\left\{-1;2;5;8\right\}\)
Mà \(a\ne3;a\ne7;a\ne8;a\ne4;a>0\)
\(\Rightarrow a=2;a=5\)
Vậy các số tìm được là:
\(63780;93780;23784;53784\)