\(3A=3+3^2+3^3+....+3^{21}\Leftrightarrow3A-A=2A=3^{21}-1\Rightarrow A=\frac{3^{21}-1}{2}\)
\(B-A=\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{1}{2}\)
Nhân cả 2 vế của A với 3 ta được ;
3A=3+\(3^2\)+\(3^3\)+...+\(3^{21}\)
3A-A=(3+\(3^2\)+\(3^3\)+...+\(3^{21}\))-(1+3+\(3^2\)+...+\(3^{20}\))
2A=3+\(3^2\)+\(3^3\)+...+\(3^{21}\)-1-3-\(3^2\)-...-\(3^{20}\)
2A=\(3^{21}\)-1
\(\Rightarrow\)A=\(\dfrac{3^{21}-1}{2}\)
Ta có : B-A=\(3^{21}\):2-\(\dfrac{3^{21}-1}{2}\)=\(\dfrac{3^{21}}{2}\)-\(\dfrac{3^{21}-1}{2}\)=\(\dfrac{3^{21}-3^{21}+1}{2}\)=\(\dfrac{1}{2}\)\(A=1+3+3^2+3^3+...+3^{20}\)
\(3A=3+3^2+3^3+...+3^{21}\)
\(3A-A=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+3^3+...+3^{20}\right)\)
\(2A=3^{21}-1\)
\(A=\dfrac{3^{21}-1}{2}< 3^{21}:2\)
3
\Rightarrow3A=3+3^2+3^3+...+3^{21}⇒3A=3+32+33+...+321
\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+3^3+...+3^{20}\right)⇒3A−A=(3+32+33+...+321)−(1+3+32+33+...+320)
\Rightarrow2A=3^{21}-1⇒2A=321−1
\Rightarrow A=\frac{3^{21}-1}{2}=\frac{3^{21}}{2}-\frac{1}{2}⇒A=2321−1=2321−21
Ta lại có:
B=\frac{3^{21}}{2}B=2321
\Rightarrow B-A=\left(\frac{3^{21}}{2}-\frac{1}{2}\right)-\frac{3^{21}}{2}=\frac{1}{2}⇒B−A=(2321−21)−2321=21