Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
bui hoang phuc

cho A(0;6), B(2;5). Tìm trên (d): x-2y+2=0 điểm M sao cho

a) MA+MB có giá trị nhỏ nhất

b) I MA -MB I có giá trị lớn nhất.

Lê Thị Thục Hiền
3 tháng 6 2021 lúc 21:32

\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)

=> A và B nằm cùng phía so với d

a)Lấy B' đối xứng với B qua d

=> d là trung trực của BB'

Có \(MA+MB=MA+MB'\)

Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương

\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)

\(\Rightarrow BB':2x+y-9=0\)

Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)

F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)

\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)

\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)

<=>\(t=\dfrac{19}{8}\)

Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

Lê Thị Thục Hiền
3 tháng 6 2021 lúc 21:43

b) Có \(MA-MB\le AB\)

\(\Leftrightarrow\left|MA-MB\right|\le AB\)

\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp

\(M\in\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\)\(\overrightarrow{AB}\left(2;-1\right)\)

\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)

\(\Leftrightarrow t=\dfrac{7}{2}\)

\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)


Các câu hỏi tương tự
Ngô Tiến Thành
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
đấng ys
Xem chi tiết