Cho a ; b ; c > 0 ; ab + bc + ac = 1
Tìm max : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}\)
Cho ab + bc + ac = 9 , a≥1 , b≥1 , c≥1
tìm min và max của bt P = a2+b2+c2
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{2\left(ab+bc+ac\right)}+\dfrac{2}{a^2+b^2+c^2}\)
cho a,b,c là các số dương thoả mãn ab+bc+ac=1
Tìm GTNN\(P=\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}+\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}+\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}.\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=1
Tìm giá trị nhỏ nhất của biểu thức :\(P=\dfrac{9}{2\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}\)
cho số thực không âm thỏa mãn a+b+c=1
tìm Min và Max của \(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
Cho tam giác ABC trên AB ,AC lần lượt lấy các điểm B',C' sao cho AB'/AB=AC'/AC .Qua B' vẽ đường thẳng a//BC ,cắt AC tại C"
a) So sánh AC' và AC"
b) C/m B'C' // BC
cho a,b,c là các số âm không thỏa mãn a2+b2+c2=1
Tìm GTNN và GTLN của biểu thức P=a+b+c