Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh \(\dfrac{1}{a+b-c}\)+\(\dfrac{1}{b+c-a}\)+\(\dfrac{1}{c+a-b}\)≥\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)
Mọi người giúp mình nhé
cho a, b, c là số đo độ dài 3 cạnh một tam giác
chứng minh \(\dfrac{b+c}{b+-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\ge6\)
Cho a; b; c là số đo độ dài các cạnh một tam giác và 3b + 6c = abc
Chứng minh: \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\ge4\)
Cho a,b,c là độ dài ba cạnh của 1 tam giác. Cm:
1<\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
Cho \(a,b,c\) là các cạnh của một tam giác, CMR:
\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
cho a,b,c là độ dài 3 cạnh của một tam giác và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}<
\dfrac{a+b+c}{abc}\)
( bên trên là nhỏ hơn hoặc bằng )
Hãy tính số đo các góc của tam giác này
-Giúp với ạ.
Cho a,b,c là 3 cạnh của tam giác, p là nửa chu vi.
CMR: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a, b, c là ba số dương thỏa mãn \(abc\)=1. Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}\)+\(\dfrac{1}{b^3\left(a+c\right)}\)+\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
-Nhờ mọi người làm giúp tui bài này với. Ngày mai tui nộp rồi.
Cho a,b,c là ba số thực dương. Chứng minh rằng:
\(\dfrac{3}{2}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\le\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\)