Lời giải:
$a+bc=a(a+b+c)+bc=(a+b)(a+c)$
Tương tự: $b+ca=(b+a)(b+c); c+ab=(c+a)(c+b)$
Do đó:
$P=\frac{b-c}{(a+b)(a+c)}+\frac{c-a}{(b+a)(b+c)}+\frac{a-b}{(c+a)(c+b)}$
$=\frac{(b-c)(b+c)+(c-a)(c+a)+(a-b)(a+b)}{(a+b)(b+c)(c+a)}$
$=\frac{b^2-c^2+c^2-a^2+a^2-b^2}{(a+b)(b+c)(c+a)}$
$=\frac{0}{(a+b)(b+c)(c+a)}=0$