\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab+ac}{b^2+bc}\)
\(\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ba+bc}{b^2+bc}\)
Do \(ab=ba;ac< bc\) do \(\dfrac{a}{b}< 1\) hay \(a< b\)
\(\Rightarrow ab+ac< bc+ba\)
\(Vậy\) \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\) \(\left(đpcm\right)\)