Biết \(a,b,c\) là các số thực không âm thỏa mãn \(a^2+b^2+c^2=a+b+c\). CMR: \(\dfrac{a+1}{\sqrt{a^5+a+1}}+\dfrac{b+1}{\sqrt{b^5+b+1}}+\dfrac{c+1}{\sqrt{c^5+c+1}}\ge3\)
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
a)\(\sqrt{4\left(a-3\right)^2}vớia\ge3\)
b)\(\sqrt{a^2\left(a+1\right)^2}vớia>0\)
c)\(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}vớia< 0,b\ne0\)
Cho a,b,c>0 thỏa mãn ab+bc+ca=1. CMR:
\(\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^3\le\dfrac{3}{2}\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\)
Cho a,b∈Z, c≠0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
CMR: \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Cho các số thực dương a+b+c=\(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\\\).CMR
\(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) . Tìm MAX của :
A= \(\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ac+a^2}}\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
Cho a, b, c \(\ne0\) và a+b+c=0. CMR :
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là số hữu tỉ
Cho a, b, c > 0. CMR :
\(\dfrac{\sqrt{a^2+b^2}}{c}+\dfrac{\sqrt{b^2+c^2}}{a}+\dfrac{\sqrt{a^2+c^2}}{b}\ge2\left(\dfrac{a}{\sqrt{b^2+c^2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\)