\(a^2+b^2+c^2+d^2+e^2-e\left(a+b+c+d\right)\)
\(=\left(a^2-ae+\frac{1}{4}e^2\right)+\left(b^2-be+\frac{1}{4}e^2\right)+\left(c^2-ce+\frac{1}{4}e^2\right)+\left(d^2-de+\frac{1}{4}e^2\right)\)
\(=\left(a-\frac{e}{2}\right)^2+\left(b-\frac{e}{2}\right)^2+\left(c-\frac{e}{2}\right)^2+\left(d-\frac{e}{2}\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge e\left(a+b+c+d\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=\frac{e}{2}\)
\(\frac{e}{2}\)
tk minh nhe
moi nguoi
xin do