Câu hỏi của kudo shinichi - Toán lớp 8 - Học toán với OnlineMath
Nguyễn Linh Chi cách đó em biết rồi ạ, nhưng em muốn tìm một cách khác, dạng như tìm k sao cho \(A\ge k\left(3x+4y\right)^2\)
Câu hỏi của kudo shinichi - Toán lớp 8 - Học toán với OnlineMath
Nguyễn Linh Chi cách đó em biết rồi ạ, nhưng em muốn tìm một cách khác, dạng như tìm k sao cho \(A\ge k\left(3x+4y\right)^2\)
cho x+y=1 tìm Max và Min của:
B=(4x^2+3y)(4y^2+3x)+25vy
Tìm Min:
A=\(x^2+4y^2-4x+32y+2078\)
B=\(3x^2+y^2-4z-y\)
\(\left\{{}\begin{matrix}mx+4y=20\\x+my=10\end{matrix}\right.\)
tìm m để hệ có nghiệm (x;y) sao cho \(-y^2+3x+5\) đạt min.
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min Q=\(\dfrac{4x^2}{x\left(32-4x^2\right)}+\dfrac{4y^2}{y\left(32-4y^2\right)}+\dfrac{4z^2}{z\left(32-4z^2\right)}\)
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min \(Q=\dfrac{4x^2}{x\left(3-4x^2\right)}+\dfrac{4y^2}{y\left(3-4y^2\right)}+\dfrac{4z^2}{z\left(3-4z^2\right)}\)
Cho \(\hept{\begin{cases}x;y\ge0\\x+y=1\end{cases}}\)Tìm min,max của :
a) \(A=x^3+y^3+2xy\)
b) \(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)
cho 3 số x,y,z TM x+y+z=3/2 . Tìm min p= (1+y/1+4x^2) +(1+z/1+4y^2)+(1+x/1+4z^2)
Cho x,y,z>0 và x+y+z=3. Tìm Min A = \(\frac{z}{\sqrt{x^2+5xy+4y^2}}+\frac{x}{\sqrt{y^2+5yz+4z^2}}+\frac{y}{\sqrt{z^2+5zx+4x^2}}\)
Cho x,y,z>0,3x2+4y2+5z2=2xyz.
Tìm Min D =3x+2y+z