Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn An

cho 3 số tự nhiên a,b,c là độ dài 3 cạnh của 1 tâm giác.chứng minh nếu a+b là 1 ước lẻ của a(b-c)2+b(a-c)2 thì a+b là hợp số

Akai Haruma
17 tháng 8 2021 lúc 0:37

Lời giải:

$a(b-c)^2+b(a-c)^2\vdots a+b$

$\Leftrightarrow a(b^2-2bc+c^2)+b(a^2-2ac+c^2)\vdots a+b$

$\Leftrightarrow ab(a+b)-4abc+c^2(a+b)\vdots a+b$

$\Leftrightarrow 4abc\vdots a+b$

Giả sử $a+b$ là số nguyên tố lẻ. Đặt $a+b=p$

Khi đó;

$4abc\vdots p\Leftrightarrow abc\vdots p$

$\Rightarrow a\vdots p$ hoặc $b\vdots p$ hoặc $c\vdots p$

Nếu $a\vdots p\Leftrightarrow a\vdots a+b$ (vô lý với mọi $a>0$)

Nếu $b\vdots p$ thì tương tự (vô lý)

Nếu $c\vdots p\Leftrightarrow c\vdots a+b$. Mà $c>0$ nên $c\geq a+b$

$\Leftrightarrow a+b-c\leq 0$ (vi phạm bđt tam giác)

Do đó điều giả sử sai. Tức $a+b$ là hợp số.


Các câu hỏi tương tự
Dương Thiên Tuệ
Xem chi tiết
Họ Và Tên
Xem chi tiết
Hoàng Minh
Xem chi tiết
Yeutoanhoc
Xem chi tiết
Đỗ Thu Hà
Xem chi tiết
Nguyễn Tấn Thịnh
Xem chi tiết
quang truong
Xem chi tiết
Nguyên Minh Anh
Xem chi tiết
Thùy Lê
Xem chi tiết