Cho a,b,c>0. Chứng minh rằng:
\(\frac{b^3}{a^2\left(a^3+2b^3\right)}+\frac{c^3}{b^2\left(b^3+2c^3\right)}+\frac{a^3}{c^2\left(c^3+2a^3\right)}\ge\frac{1}{3}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\).
cho a,b,c là các số thực dương thỏa mãn a+b+c=1
CMR: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge3\left(a^2+b^2+c^2\right)\)
cho a,b,c >0; abc=1.chứng minh
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chứng minh
1.\(tanA=\frac{abc}{R\left(b^2+c^2-a^2\right)}\)
2.\(h_a=\frac{a.sinB.sinC}{sin\left(B+C\right)}\)
3.\(a\left(cosB+cosC\right)+b\left(cosC+cosA\right)+c\left(cosA+cosB\right)=2p\)
4.\(\left(b+c\right)cosA+\left(a+c\right)cosB+\left(b+a\right)cosC=a+b+c\)
Chứng minh
1.\(\frac{h_a}{h_b}=\frac{sinA}{sinB}\)
2.\(cotA+cotB+cotC\ge\sqrt{3}\)
3.\(\left(b^2-c^2\right)cosA=a\left(c.cosC-b.cosB\right)\)
4.\(a^2=b^2+c^2-4S.cotA\)
5.\(a^2+b^2\ge\frac{4S}{sinC}\)
Tìm các giá trị của tham số m để mỗi bất pt sau nghiệm đúng với mọi giá trị x
a) (m+1)x2 - 2(m-1)x + 3m -3 \(\ge\) 0
b) ( m2 + 4m -5 ) x2 - 2( m - 1)x + 2 \(\le\)0
c) \(\frac{x^2-8x+20}{mx^2+2\left(m+1\right)x+9m+4}< 0\)
d) \(\frac{3x^2-5x+4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}>0\)
1.Bất pt \(4x^2+\frac{1}{x^2}+\left|\frac{2x^2-1}{x}\right|-6\le0\)có tập nghiệm là \(\left[a;b\right]\cup\left[c;d\right]\) (với a,b,c,d thuộc R). Khi đó toogr S=a+b+c+d có giá trị
A.\(\frac{-3}{2}\)
B.\(\frac{3}{2}\)
C.0
D.2
2.Có bao nhiêu điểm M trên đường tròn lượng giác gốc A thỏa mãn \(sđ\stackrel\frown{AM}=-\frac{\pi}{7}+\frac{k\pi}{3}\left(k\in Z\right)\)
a.5
b.6
c.3
d.4
3.Đường tròn (C) đi qua 2 điểm P(-1;2),Q(-2;3) và có tâm nằm trên đường thẳng \(\left\{{}\begin{matrix}x=-1+t\\y=7+3t\end{matrix}\right.\) có bán kính
a.5
b.\(\sqrt{5}\)
c.25
d.\(\sqrt{10}\)
4.Cho đường tròn (C):(x-2)2 +(y-1)2 =5 và đường thẳn d:x-y-4=0.Gọi I là tâm của (C), M là điểm thuộc d.Qua M kẻ tiếp tuyến MA,MB đến (C) (A,B là các tiếp điểm) .Biết điểm M(a;b) và tứ giác IAMB có diện tích là ).Khi đó b-a bằng
a.4
b.1
c.-2
d.-4
cho \(\overrightarrow{a}=\left(1;2\sqrt{2}\right),\overrightarrow{b}=\left(\sqrt{x};\sqrt{2-x}\right);\left(0\le x\le2\right).Tìm\left|\overrightarrow{a}\right|,\left|\overrightarrow{b}\right|;\overrightarrow{a}.\overrightarrow{b}.Tìm\)GTLN của y=\(\sqrt{x}+4\sqrt{1-\frac{x}{2}}\)
cho a,b,c là các số thực dương. Tìm min \(\frac{3\left(b+c\right)}{2a}+\frac{4a+3c}{4b}+\frac{12\left(b-c\right)}{2a+3b}\)