Vì abc=1 nên:
\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}=1\)
Chúc bạn học tốt.
Vì abc=1 nên:
\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}=1\)
Chúc bạn học tốt.
Cho a,b,c thỏa mãn abc=1.Chứng minh:1/ab+a+1 + 1/bc+b+1 + 1/abc+bc+b = 1
Cho 3 số a, b ,c thỏa mãn abc =1 . Chứng minh : \(\frac{1}{ab+a+1}\)+ \(\frac{b}{bc+b+1}\)+ \(\frac{1}{abc+bc+b}\)= 1
Cho 3 số a,b,c thỏa mã abc=1. Hãy chứng minh rằng:
1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b
cho số a,b,c thỏa mãn : a.b.c= 1
chứng minh : \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Cho ba số a,b,c thỏa mãn a×b×c=1CMR 1/ab+a+1 + 1/bc+b+1 + 1/abc+bc+b =1
Cho a,b,c là các số thực thoả mãn a.b.c = 1. Chứng minh rằng :
\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=1\)
cho 3 số a,b,c thõa mãn : a.b.c=1
C/M : \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=1\)1
Cho 3 số thực a,b,c thỏa mãn $\frac{a}{1+ab}$ =$\frac{b}{1+bc}$ =$\frac{c}{1+ca}$
Tính S=abc
Cho 3 số tự nhiên a.b.c=1.Chứng minh rằng:
(1/ab+a+1)+(b/bc+b+1)+(1/abc+bc+1)
help me huhu