Áp dụng bất đẳng thức cô si cho 2 số thực không âm ta có:
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}\times4\left(y-1\right)}=4x\) (1)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge2\sqrt{\frac{y^2}{x-1}\times4\left(x-1\right)}=4y\) (2)
Cộng (1) và (2) vế theo vế , ta được:
\(P+4y-4+4x-4\ge4x+4y\)
\(\Rightarrow P\ge8\)
Dấu "\(=\)" xảy ra khi : \(x=y=2\)
Vậy giá trị nhỏ nhất của P=\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\) là 8 khi \(x=y=2\)
Cần chứng minh \(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\) thật vậy:
Đặt \(\left\{\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)\(\left(a,b>0\right)\) ta có bđt cần cm tương đương:
\(\Leftrightarrow\left(a^2+2a+1\right)a+\left(b^2+2b+1\right)b\ge8ab\)
\(\Leftrightarrow\)\(a^3+2a^2+a+b^3+2b^2+b\ge8ab\)
Áp dụng BĐT AM-GM ta có:
\(2a^2+2b^2\ge2\sqrt{2a^2\cdot2b^2}=4ab\)
\(a^3+b^3+a+b\ge4\sqrt[4]{a^4b^4}=4ab\)
Cộng theo vế ta có đpcm
Vậy GTNN của BT là 8