Áp dụng BĐT Bunhiacopski:
\(\left(\sqrt{a+1}+\sqrt{b+1}\right)^2\le\left(1^2+1^2\right)\left(a+1+b+1\right)=2\left(a+b+2\right)\\ \Leftrightarrow a+b+2\ge\dfrac{16}{2}=8\\ \Leftrightarrow a+b\ge6\)
Áp dụng BĐT: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow P=a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{2}=\dfrac{\left(a+b\right)^4}{8}\ge\dfrac{6^4}{8}=162\)
Do đó \(P_{min}=162\Leftrightarrow a=b=3\)