Cho hình bình hành \(ABCD\) tâm \(O\). Hai điểm \(M\) và \(N\) lần lượt là hai điểm di động trên hai đường thẳng \(AB,AD\) sao cho \(M,C,N\) thẳng hàng. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AD}\left(x,y\ne0\right)\), tìm biểu thức \(A\) thỏa mãn phương trình \(x+y=A.\)
(Oxy) cho A(2;-1), B(6;-4), C(9;0). Tìm tập hợp điểm M thỏa \(\overrightarrow{OC}^2-\overrightarrow{OM}^2=\overrightarrow{OA}\cdot\overrightarrow{OB}\) .
Cho đoạn thẳng AB có trung điểm I. M là điểm tùy ý không nằm trên đường thẳng AB. Trên MI kéo dài, lấy điểm N sao cho IN = MI
a) CMR: \(\overrightarrow{BN}-\overrightarrow{BA}=\overrightarrow{MB}\)
b) Tìm các điểm D, C sao cho: \(\overrightarrow{NA}+\overrightarrow{NI}=\overrightarrow{ND}\) ; \(\overrightarrow{NM}-\overrightarrow{BN}=\overrightarrow{NC}\)
Cho hình thang OABC có M, N lần lượt là trung điểm của OB và OC
a. Phân tích vectơ \(\overrightarrow{AM}\) theo \(\overrightarrow{OA}\) và\(\overrightarrow{OB}\)
b. Phân tích các vectơ \(\overrightarrow{BN}\) , \(\overrightarrow{MN}\) theo 2 vectơ \(\overrightarrow{OB}\) và\(\overrightarrow{OC}\)
cho tam giác ABC vuông tại A có AB=1, AC=2. Dựng M sao cho AM=3 và AM vuông góc với BC. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}\). Tìm x,y
Cho hình thang ABCD có AB // CD, CD = 3AB. Gọi E, F là các điểm trên cạnh DC sao cho DE = EF = FC, O là giao điểm của À và BE, K là điểm thuộc cạnh bên BC sao cho \(\overrightarrow{BK}=x\overrightarrow{BC}\).
1) Chứng minh đẳng thức sau : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)
2) Tìm x để 3 điểm D, O, K thẳng hàng.
cho tam giác ABC, xác định điểm O sao cho \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=2\overrightarrow{CB}\)
Cho hình chữ nhật ABCD tâm O, AD =4, AD =5
a) Tính độ lớn \(\overrightarrow{BD}\)
b) Gọi M là trung điểm của CD. Chứng minh \(2\overrightarrow{OM}+\overrightarrow{OB}=\dfrac{1}{2}\overrightarrow{AC}\)
Cho 2 điểm phân biệt A ( xA ; yA ) và ( xB ; yB ). Ta nói điểm M chia đoạn thẳng AB theo tỉ số k nếu \(\overrightarrow{MA}=k\overrightarrow{MB}\left(k\ne1\right)\). Chứng minh rằng:
\(\hept{\begin{cases}x_M=\frac{x_A-kx_B}{1-k}\\y_M=\frac{y_A-ky_B}{1-k}\end{cases}}\)