\(E=\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)
\(=a-3\sqrt{a}+2\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)
\(=-7\)
\(G=\dfrac{1}{\sqrt{x}+2}-\dfrac{2}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{x-4}\)
\(=\dfrac{1}{\sqrt{x}+2}-\dfrac{2}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-2-2\left(\sqrt{x}+2\right)+\sqrt{x}}{x-4}\)
\(=\dfrac{2\sqrt{x}-2-2\sqrt{x}-4}{x-4}=-\dfrac{6}{x-4}\)
\(H=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)








giải giúp em ý nào cũng được ạ, giải chi tiết ạ
