\(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^n}=2+\dfrac{1-\dfrac{1}{2^{n+1}}}{1-\dfrac{1}{2}}=3-\dfrac{1}{2^n}\)
\(\lim\left(3-\dfrac{1}{2^n}\right)=3\)
\(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^n}=2+\dfrac{1-\dfrac{1}{2^{n+1}}}{1-\dfrac{1}{2}}=3-\dfrac{1}{2^n}\)
\(\lim\left(3-\dfrac{1}{2^n}\right)=3\)
Chỉ cần đáp án ạ
Có bao nhiêu giá trị nguyên của a để giới hạn
lim(\(\sqrt{n^2+a^2n}-\sqrt{n^2+\left(a+2\right)n+1}\)=0
A. 0
B. 2
C. 1
D. 3
1/ lim \(\dfrac{\sqrt{n^4-n^2}+3n^2}{1-n^2}\)
2/ lim \(\dfrac{n\sqrt{n}-n^3}{4n^3+\sqrt{n}}\)
3/ lim \(\dfrac{3.4^n-1}{2.3^n+4}\)
4/ lim \(\dfrac{2^{n+1}+4.3^{n-1}}{1-2^{n-1}+3^{n+1}}\)
7/ lim \(\sqrt{n^2+4n+1}-n\)
8/ lim \(n-\sqrt{n^2+9n-1}\) (pp liên hợp lim \(\dfrac{n^2-\left(n^2+9n-1\right)}{n+\sqrt{n^2+9n-1}}\)
9/ lim \(\dfrac{1+2+3+...+n}{n^2-1}\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)
11) \(\lim\limits_{x->1}\) \(\dfrac{3_{\sqrt{4x-1}-\sqrt{4x-3}}}{x-1}\)
11) \(\lim\limits_{x->4}\dfrac{4x-1}{x^2-8x+16}\)
12) \(\lim\limits_{x->2}\)\(\dfrac{4-x^2}{x^3-8}\)
13) \(\lim\limits_{x->+\infty}\left(3_{\sqrt{x^3+4x^2}-x}\right)\)
\(\left(x_n\right)\left\{{}\begin{matrix}x_1=2\\x_{n+1}=\dfrac{x_n+2+\sqrt{x_n^2+8x_n-4}}{2},n\in N,n>0\end{matrix}\right.\)
Đặt \(y_n=\sum\limits^n_{k=1}\dfrac{1}{x_n^2-4}\). Tìm lim yn
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
Câu 1: Tính giới hạn
a, lim\(\dfrac{2-5^{n-2}}{3^n=2.5^n}\) b,lim\(\dfrac{2-5^{n+2}}{3^n-2.5^n}\)
Câu 2 :CMR :\(x^4+x^3-3x^2+x+1=0\) có ít nhất một nghiệm âm lớn hơn -1
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M,N lần lượt là trung điểm của AD và SD. Tìm số đo góc giữa 2 đường thẳng MN và SC
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)