a) C có nghĩa ⇔\(\left\{{}\begin{matrix}2x-2\ne0\\2x^2-2\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b)C= \(\dfrac{x}{2x-2}-\dfrac{x^2+1}{2x^2-2}\)
= \(\dfrac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)-\(\dfrac{x^2+1}{2\left(x+1\right)\left(x-1\right)}\)
= \(\dfrac{x^2+x}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{1}{2\left(x+1\right)}\)
c) Ta có x2-x=0 ⇒ \(\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Thay x=0 vào C= \(\dfrac{1}{2\left(x+1\right)}\) ⇒ C= \(\dfrac{1}{2}\)
Thay x= 1 vào C = \(\dfrac{1}{2\left(x+1\right)}\) ⇒ C= \(\dfrac{1}{4}\)
d) C= \(\dfrac{1}{2\left(x+1\right)}\)= \(\dfrac{-1}{2}\)
⇔-2(x+1)=2 ⇔ x=-2