Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx
Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc:
P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)
a) x = 4,95 ÷ 5,05 nm
P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02
Tương tự với phần b, c ta tính được kết quả:
b) P= 0.0069
c)P=6,6.10-6
Ta có:Xác suất tìm thấy vi hạt là:
P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)
=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)
a)x=4,95\(\div\)5,05nm
Xác suất tìm thấy vi hạt là:
P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019
b)Xác suất tìm thấy vi hạt là:
P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069
c)Xác suất tìm thấy vi hạt là:
P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)
Xác suất để tìm thấy vi hạt trong TH tổng quát x=x1--x2 là:P= \(\int\limits^{x_2}_{x_1}\psi^2dx\)
thay \(\psi=\sqrt{\frac{2}{a}}\sin\frac{\pi x}{a}\Rightarrow\psi^2=\frac{2}{a}\sin^2\frac{\pi x}{a}\)=>\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\frac{\pi x}{a}dx=\int\limits^{x_2}_{x_1}\frac{1-\cos\frac{2\pi x}{a}}{a}dx=\frac{1}{a}\int\limits^{x_2}_{x_1}1-\cos\frac{2\pi x}{a}dx=\frac{1}{a}\left(x_2-\frac{a}{2\pi}\sin\frac{2\pi x_2}{a}-x_1+\frac{a}{2\pi}\sin\frac{2\pi x_1}{a}\right)=\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\frac{2\pi x_1}{a}-\sin\frac{2\pi x_2}{a}\right)\right)\)
TH1 x= 4.95-5.05 thay số ta tính được XS tìm thấy vi hạt là:P1=\(\frac{1}{10}\left(5.05-4.95-\frac{10}{2\pi}\left(\sin\frac{2\pi4.95}{10}-\sin\frac{2\pi5.05}{10}\right)\right)=0.0102\)
TH2,TH3 thay tương tư ta cũng có P2=P3=P1=0.0102
Như vậy qua các kết quả trên ta thấy với k/c x2-x1 như nhau thì XS tìm thấy vi hạt trong ko gian ta xét là như nhau.
Ta có: \(\psi=\sqrt{\frac{2}{a}}.\sin\left(\frac{\pi.x}{a}\right)\)
\(\Rightarrow D=\int\limits^{x_2}_{x_1}\psi^2dx=\frac{2}{a}.\int_{x_1}^{x_2}\sin^2\left(\frac{\pi x}{a}\right)dx\)
\(=\frac{x_2-x_1}{a}-\frac{1}{2\pi}.\left(\sin\frac{2\pi x_2}{a}\right)-\frac{1}{2\pi}\sin\left(\frac{2\pi x_1}{a}\right)\)
a, D=0,02
b, D=6,9.\(10^{-3}\)
c, D=\(6,6.10^{-6}\)