a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{BCD}\) chung
Do đó: ΔBDC~ΔHBC
b: ta có ΔBDC~ΔHBC
=>\(\dfrac{CB}{CH}=\dfrac{CD}{CB}\)
=>\(CB^2=CH\cdot CD\)
c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
\(\widehat{ADK}=\widehat{BCH}\)
Do đó;ΔAKD~ΔBHC
d: ΔBDC vuông tại B
=>\(BC^2+BD^2=DC^2\)
=>\(BD^2=25^2-15^2=400\)
=>\(BD=\sqrt{400}=20\left(cm\right)\)
Xét ΔBDC vuông tại B có BH là đường cao
nên \(\left\{{}\begin{matrix}DH\cdot DC=DB^2\\CH\cdot CD=CB^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}DH\cdot25=20^2=400\\CH\cdot25=15^2=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=16\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\)