a/chứng minh cái gì ah
b/MH làm sao vớiAB MK làm sao với AC
đề bài bạn cho ko rõ nên mình cx bó tay
a/chứng minh cái gì ah
b/MH làm sao vớiAB MK làm sao với AC
đề bài bạn cho ko rõ nên mình cx bó tay
Ét o ét
Cho tam giác ABC cân tại a. M là trung điểm của Bc chứng minh ∆ amb = ∆ amc kẻ mh vuông góc với ab tại h mk vuông góc với ac tại A Chứng minh Ma là tia phân giác của góc MHK Chứng minh ∆ HMK cân
Cho tam giác ABC cân tại A , M là trung điểm của BC . TUừ M kẻ MH vuông góc với AB Mk vuông góc vơi AC . Chứng minh
a) tam gíc BMH = tam giác CMK
b) tam giác MHK cân
c) MA la tia phân giác của HMK^
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho ∆ABC vuông tại A, tia phân giác của B cắt AC tại M, kẻ MH ⊥ BC (H ∈ BC).
a/ So sánh MH và MB.
b/ Chứng minh ∆BAM = ∆BHM
c/ Chứng minh ∆AMH cân tại M
d/ Trên tia đối của tia AB, lấy điểm N sao cho AN = AB. Chứng minh CA là tia phân giác của
BCN
e/ Chứng minh BC + CN > 2AB
Cho tam giác ABC (AB < AC). Gọi Ax là tia phân giác của góc A. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia Ax, cắt tỉa AB tại M và cắt AC tại N. a) Chứng minh AAMN cân. b) Qua B kẻ đường thẳng song song với AC cắt MN tại E. Chứng minh BE = CN. c) Giả sử AB = 5cm, AC = 7cm. Tính AM và BM.
Cho tam giác ABC cân tại A và BAC là góc nhọn. Vẽ trung tuyến AM (M thuộc BC) . Từ M kẻ MH vuông góc AB (H thuộc AB) và MK vuông góc AC (K thuộc AC)
a, Chứng minh: MH = MK
b, Chứng minh: AM là trung trực của HK
c, Gọi I là giao điểm của AC và MH. Xác định trực tâm của tam giác AMI
d, Từ B kẻ Bx vuông góc BA và Cy vuông góc CA . Bx cắt Cy tại D.
e, Chứng minh: A, M, D thẳng hàng e, Tính độ dài của đoạn thẳng IM khi AK = 2cm và BAC= 60 độ
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ M D ⊥ B C ( D ∈ B C ) .
a) Chứng minh BA = BD.
b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh ∆ A B C = ∆ D B E .
c) Kẻ D H ⊥ M C ( H ∈ M C ) và A K ⊥ M E ( K ∈ M E ) . Gọi N là giao điểm của hai tia DH và AK. Chứng minh MN là tia phân giác góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng.
Cho tam giác ABC cân tại A lấy điểm M là trung điểm của BC
a) Chứng minh tam giác ABM=tam giác ACM
b) Biết AB=10cm ; BC= 12 cm. Tính AM
c) qua M kẻ MK vuông góc AB ( k thuộc AB ) , Kẻ MH vuông góc AB (H thuộc AC) . Chứng minh MH = MK
d) Chứng minh AM vuông góc với KH
( Mng ơi , giúp mình câu d bài này với ạ , cảm ơn mng nhìu ạ )
Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM (AM thuộc BC). Từ M kẻ MH vuông góc AC. Trên tia đối của MH lấy điểm K sao cho MK = MH a) Chứng minh tam giác MHC = tam giác MKB b) Chứng minh AB vuông góc AC c) Gọi G là trung điểm của BH và AM, I là trung điểm của AB. Chứng minh I, G, C thẳng hàng
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE