a: Xét (O) có
OM là một phần đường kính
CD là dây
OM\(\perp\)CD tại M
Do đó: M là trung điểm của CD
Xét tứ giác OCAD có
M là trung điểm của CD
M là trung điểm của OA
Do đó: OCAD là hình bình hành
mà OC=OD
nên OCAD là hình thoi
a: Xét (O) có
OM là một phần đường kính
CD là dây
OM\(\perp\)CD tại M
Do đó: M là trung điểm của CD
Xét tứ giác OCAD có
M là trung điểm của CD
M là trung điểm của OA
Do đó: OCAD là hình bình hành
mà OC=OD
nên OCAD là hình thoi
Cho (O) đường kính AB, M là trung điểm của OA. Vẽ dây CD vuông góc vs OA tại M. C/m:
a) Tứ giác ACOD là hình thoi.
b) Tam giác BCD đều.
Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm OA. Dây CD vuông góc với OA tại H.
1. Tứ giác ACOD là hình gì? Tại sao?
2. Chứng minh các tam giác OAC và CBD là các tam giác đều.
3. Gọi M là trung điểm BC. Chứng minh ba điểm D,O, M thẳng hàng.
4. Chứng minh đẳng thức CD2 = 4 AH. HB
Cho (O; R) có đường kính AB. Lấy điểm C trên đường tròn sao cho AC = R.
a) Tính BC theo R và các góc của ΔABC.
b) Gọi M là trung điểm của OA. Vẽ dây CD vuông góc với AB tại M. Chứng
minh: tứ giác ACOD là hình thoi.
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng AB tại E. Chứng minh: ED
là tiếp tuyến của (O).
d) Hai đường thẳng EC và DO cắt nhau tại F. Chứng minh: C là trung điểm của EF
BT1: Cho đường tròn tâm O, đường kính AB. Dây CD cắt AB tại M biết MC= 4cm, MD= 12cm, góc BMD= 30 độ
a/ Tính khoảng cách từ O đến CD
b/ Tính bán kính đường tròn O
BT2: Cho đường tròn tâm O bán kính R, đường kính AB, dây CD vuông góc với OA tại điểm M là trung điểm của OA
a/ Tứ giác ACOD là hình gì ? Vì sao?
b/ Tam giác BCD là tam giác gì ? Vì sao ?
Cho (O;R); đường kính AB, day cung CD vuông góc vs OA tại điểm M, M là trung điểm của OA
a) Tứ giác ACOD là hình gì? Vì sao?
b) Tam giác BCD là tam giác gì? Vì sao?
Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm OA. Dây CD vuông góc với OA tại H.
1. Tứ giác ACOD là hình gì? Tại sao?
2. Chứng minh các tam giác OAC và CBD là các tam giác đều.
3. Gọi M là trung điểm BC. Chứng minh ba điểm D,O, M thẳng hàng.
4. Chứng minh đẳng thức CD2 = 4 AH. HB
Cho đường tròn tâm O bán kính R , đường kính AB . Dây cung CD vuông góc với OA tại M , M là trung điểm của OA.
a) Tứ giác ACOD là hình gì ? Vì sao ?
b) Tam giác ACD là tam giác gì ? Vì sao ?
Cho đường tròn (O) có đường kính AB = 2R, dây CD vuông góc với OA tại trung điểm M của OA. Tieeso tuyến tại C của (O) cắt OA tại N.
a) Chứng minh tứ giác ACOD là hình thoi. Tính số đo góc COA và độ dài CN theo R.
b) Vè đường tròn tâm D bán kính DM cắt đường tròn (O) tại E và F. Vẽ đường kính DP của (O), DP cắt BC tại I và cắt FE tại H. Chứng minh I là trung điểm BC và BC song song với FE.
c) Gọi K là trung điểm DM. Chứng minh E, K, F thẳng hàng.
mọi người cho mình xin câu b ý 2 và câu c thôi ạ, mình cảm ơn nhiều
Cho (O) đường kính AB = 2R . Kẻ dây CD vuông góc với AB tại I sao cho I là trung điểm của AO,
a) Chứng minh IC = ID
b) C/m Tứ giác ACOD là hình thoi
c)C/m DO vuông góc BC
d) C/m Tam giác BCD đều?