Cho x, y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 - x - 2 y + y ( x - 2 ) .Tính giá trị nhỏ nhất của biểu thức T = x + y
Cho x, y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 - x - 2 y + y ( x - 2 ) .
Tính giá trị nhỏ nhất của biểu thức T = x + y .
Cho x, y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 − x − 2 y + y x − 2 . Tính giá trị nhỏ nhất của biểu thức T=x+y
A. T min = 2 + 3 2
B. T min = 3 + 2 3
C. T min = 3 2
D. T min = 5 + 3 2
Cho x,y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 - x - 2 y + y x - 2
Tính giá trị nhỏ nhất của biểu thức T =x + y.
A. T m i n = 2 + 3 2
B. T m i n = 3 + 2 3
C. T m i n = 1 + 5
D. T m i n = 5 + 3 2
Có tất cả bao nhiêu giá trị của x thỏa mãn đồng thời hai điều kiện x + 1/3 là số nguyên và log 1 3 5 - x < log 1 3 3 - x ?
A. 1
B. 2
C. 3
D. 4
Có bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình dưới đây:
log (x - 40) + log (60 - x) < 2?
A. 20
B. 10
C. Vô số
D. 18
Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình: 2 x − 1 − 2 x 2 − x ≥ x − 1 2
A. 0
B. 1
C. 2018
D. Vô số
Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình: 2 x - 1 - 2 x 2 - x ≥ x - 1 2
A. 0
B. 1
C. 2018
D. Vô số
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 4
Cho ba điểm A, M, B nằm trên mặt cầu (S) thỏa mãn điều kiện góc AMB = 90o. Diện tích tam giác AMB có giá trị lớn nhất là:
A. 4
B. 2
C. 4π
D. Không tồn tại