Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đỗ Ngọc Minh

Các bạn làm giúp mình mấy bài này mai mình phải nộp rồiundefined

ILoveMath
17 tháng 11 2021 lúc 21:15

1. TH1:a+b+c≠0

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{a+c-b}{b}=1\Rightarrow a+c-b=b\Rightarrow a+c=2b\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)

\(=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\\ =\dfrac{2c.2a.2b}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

TH2:a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)


Các câu hỏi tương tự
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Nguyễn Đỗ Ngọc Minh
Xem chi tiết