Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Hường

(C): x2 + y2+ 4x - 2y - 4 = 0, d : 6x - 8y + 2 = 0
Viết phương trình các tiếp tuyến của (C)
a) Tại A(-2;4)
b) Vuông góc; song song với đường thẳng d
c) Có hệ số góc k = 5
d) Tại giao điểm với trục tung Oy; trục hoành Ox

Nguyễn Việt Lâm
11 tháng 3 2019 lúc 5:21

\(\left(C\right)\) có tâm \(I\left(-2;1\right)\) bán kính \(R=3\); \(d\) có 1 vtpt \(\overrightarrow{n_d}=\left(3;-4\right)\)

a/ \(\overrightarrow{IA}=\left(0;3\right)\)

Do tiếp tuyến \(d_1\) tại A vuông góc với \(IA\Rightarrow\) nhận \(\overrightarrow{n_{d1}}=\left(1;0\right)\) là 1 vtpt

\(\Rightarrow\) phương trình \(d_1:\) \(1\left(x+2\right)+0\left(y-4\right)=0\Leftrightarrow x+2=0\)

b/ Tiếp tuyến \(d_2\) song song với \(d\Rightarrow\) nhận \(\overrightarrow{n}=\left(3;-4\right)\) là 1 vtpt

Gọi pt \(d_2\) có dạng: \(3x-4y+c=0\)

\(\Rightarrow d\left(I;d_2\right)=R\Leftrightarrow\frac{\left|-2.3-4.1+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\Rightarrow\left|c-10\right|=15\Rightarrow\left[{}\begin{matrix}c=25\\c=-5\end{matrix}\right.\)

\(\Rightarrow\) pt \(d_2\): \(\left[{}\begin{matrix}3x-4y+25=0\\3x-4y-5=0\end{matrix}\right.\)

*/ Tiếp tuyến \(d_3\) vuông góc \(d\Rightarrow\) có 1 vtpt là \(\overrightarrow{n_{d3}}=\left(4;3\right)\)

Gọi pt \(d_3\) có dạng: \(4x+3y+c=0\)

\(\Rightarrow d\left(I;d_3\right)=R\Leftrightarrow\frac{\left|-2.4+3.1+c\right|}{\sqrt{4^3+3^2}}=3\Rightarrow\left|c-5\right|=15\Rightarrow\left[{}\begin{matrix}c=20\\c=-10\end{matrix}\right.\)

\(\Rightarrow\) phương trình \(d_3:\) \(\left[{}\begin{matrix}4x+3y+20=0\\4x+3y-10=0\end{matrix}\right.\)

Nguyễn Việt Lâm
11 tháng 3 2019 lúc 5:37

c/ Gọi pttt \(d_4\) có hệ số góc \(k=5\)\(y=5x+a\Leftrightarrow5x-y+a=0\)

\(\Rightarrow d\left(I;d_4\right)=R\Leftrightarrow\frac{\left|-2.5-1.1+a\right|}{\sqrt{5^2+1^2}}=3\Leftrightarrow\left|a-11\right|=3\sqrt{26}\Rightarrow\left[{}\begin{matrix}a=11+3\sqrt{26}\\a=11-3\sqrt{26}\end{matrix}\right.\)

\(\Rightarrow\) phương trình \(d_4:\) \(\left[{}\begin{matrix}5x-y+11+3\sqrt{26}=0\\5x-y+11-3\sqrt{26}=0\end{matrix}\right.\)

d/ Giao điểm của (C) với Oy là nghiệm:

\(\left\{{}\begin{matrix}x^2+y^2+4x-2y-4=0\\x=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(0;1+\sqrt{5}\right)\\B\left(0;1-\sqrt{5}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(2;\sqrt{5}\right)\\\overrightarrow{IB}=\left(2;-\sqrt{5}\right)\end{matrix}\right.\)

Gọi \(d_5;d_6\) lần lượt là tiếp tuyến tại A và B \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{n_{d5}}=\left(\sqrt{5};-2\right)\\\overrightarrow{n_{d6}}=\left(\sqrt{5};2\right)\end{matrix}\right.\)

\(\Rightarrow\) phương trình \(d_5;d_6\) lần lượt là:

\(\left\{{}\begin{matrix}\sqrt{5}\left(x-0\right)-2\left(y-1-\sqrt{5}\right)=0\\\sqrt{5}\left(x-0\right)+2\left(y-1+\sqrt{5}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{5}x-2y+2+2\sqrt{5}=0\\\sqrt{5}x+2y-2+2\sqrt{5}=0\end{matrix}\right.\)

*/ \(d_7;d_8\) là tiếp tuyến giao Ox tại D, E. Giao điểm của (C) với \(Ox\) là nghiệm:

\(\left\{{}\begin{matrix}y=0\\x^2+y^2+4x-2y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}D\left(-2+2\sqrt{2};0\right)\\E\left(-2-2\sqrt{2};0\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DI}=\left(-2\sqrt{2};1\right)\\\overrightarrow{EI}=\left(2\sqrt{2};1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{n_{d7}}=\left(1;2\sqrt{2}\right)\\\overrightarrow{n_{d8}}=\left(1;-2\sqrt{2}\right)\end{matrix}\right.\)

\(\Rightarrow\) phương trình \(d_7;d_8\) lần lượt là:

\(\left\{{}\begin{matrix}x+2\sqrt{2}y+2-2\sqrt{2}=0\\x-2\sqrt{2}y+2+2\sqrt{2}=0\end{matrix}\right.\)


Các câu hỏi tương tự
Ngô Chí Thành
Xem chi tiết
Trang Nana
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Đỗ Thị Thu Hằng (registe...
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Trang Nana
Xem chi tiết
Julian Edward
Xem chi tiết
Trần Minh Anh
Xem chi tiết
Hà Quỳnh
Xem chi tiết