Ta có:
\(C=2x^2-4x+6\)
\(C=2\cdot\left(x^2-2x+3\right)\)
\(C=2\cdot\left(x^2-2x+1+2\right)\)
\(C=2\cdot\left[\left(x-1\right)^2+2\right]\)
\(C=2\left(x-1\right)^2+4\)
Mà: \(2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow C=2\left(x-1\right)^2+4\ge4>0\forall x\)
Vậy tất cả các số thực đều thỏa mãn:
\(\Rightarrow x\in R\)
`C = 2x^2 - 4x + 6`
`2C = 4x^2 - 8x + 12`
`2C = ( 2x )^2 - 2 . 2x . 2 + 2^2 + 12 - 2^2`
`2C = ( 2x - 2 )^2 + 8`
Vì ` ( 2x - 2 )^2 >= 0 AAx` nên :
`( 2x - 2 )^2 + 8 >= 8 > 0 AAx`
Hay `2C > 0 AAx` . Vì `2C > 0 AAx => C > 0 AAx` .
Vậy `C > 0 AAx` ( đpcm ) .