\(C=1+3^2+3^4+3^6+...+3^{20}\)
\(\Rightarrow3^2C=3^2+3^4+3^6+3^8+...+3^{22}\)
\(\Rightarrow3^2C-C=3^{22}-1\)
\(\Leftrightarrow8C=3^{22}-1\)
\(\Leftrightarrow C=\dfrac{3^{22}-1}{8}\)
\(C=1+3^2+3^4+...+3^{20}\)
\(\Rightarrow9C=3^2+3^4+3^6+...+3^{22}\)
\(\Rightarrow9C-C=\left(3^2+3^4+3^6+...+3^{22}\right)-\left(1+3^2+3^4+...+3^{20}\right)\)
\(\Rightarrow8C=3^{22}-1\)
\(\Rightarrow C=\dfrac{3^{22}-1}{8}\)
Ta có: \(C=1+3^2+3^4+3^6+...+3^{20}\)
\(\Leftrightarrow9\cdot C=3^2+3^4+3^6+...+3^{22}\)
\(\Leftrightarrow8\cdot C=3^{22}-1\)
\(\Leftrightarrow C=\dfrac{3^{22}-1}{8}\)