\(P=\dfrac{2x+3}{\sqrt{x}-2}=\dfrac{2\left(x-4\right)+11}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+11}{\sqrt{x}-2}\)
\(=2\left(\sqrt{x}+2\right)+\dfrac{11}{\sqrt{x}-2}=2\left(\sqrt{x}-2\right)+\dfrac{11}{\sqrt{x}-2}+8\)
\(\ge2\sqrt{\dfrac{2\left(\sqrt{x}-2\right).11}{\sqrt{x}-2}}+8=2\sqrt{22}+8\)