Với \(x\in\left[2;5\right]\Rightarrow x-2\ge0\Rightarrow\left|x-2\right|=x-2\)
Do đó:
\(I=\int\limits^5_2\dfrac{x-2}{x}dx=\int\limits^5_2\left(1-\dfrac{2}{x}\right)dx=\left(x-2lnx\right)|^5_2=\left(5-2ln5\right)-\left(2-2ln2\right)\)
\(=2ln2-2ln5+3\)
\(\Rightarrow a;b;c\)