Thực hiện phép tính g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4); a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4); b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b); c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3); d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b) e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
Cho đa thức: f(x)=x4+ax3+bx2+cx+df(x)=x4+ax3+bx2+cx+d ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(9)+f(-5
)
Giải các phương trình sau:
a, (9x2 - 4)(x + 1) = (3x +2)(x2 - 1)
b, (x - 1)2 - 1 + x2 = (1 - x)(x + 3)
c, (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)
d, x4 + x3 + x + 1 = 0
e, x3 - 7x + 6 = 0
f, x4 - 4x3 + 12x - 9 = 0
g, x5- 5x3 + 4x = 0
h, x4 - 4x3 + 3x2 + 4x - 4 = 0
Biết rằng x 2 − 3x + 1 = 0, tính giá trị của x 4 + 1/x4 .
1, Cho biết x+y=15 và xy=50. Tính giá trị của các biểu thức:
a. A=x2+y2
b. B=x4+y4
c. C=x2-y2
2, Cho biết x-y=15 và xy=50. Hãy tính x2+y2 ; x2-y2 rồi từ đó suy ra kết quả của x4-y4.
Cho hai đa thức P(x)= x5-5x3+4x+1, Q(x)=2x2+x-1. Gọi x1,x2,x3,x4,x5 là các ng của P(x)
Tính Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)
Tìm đa thức M biết:
a) 2 x 6 - x 4 - 2 x 2 +1 = M.(2 x 2 -1);
b) ( x 2 +x + 1).M = x 4 - x 3 - 4 x 2 - 5x - 3.
Bài 1: Thực hiện phép tính
a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4);
b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b);
c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3);
d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b)
e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
Bµi 2. Viết các biểu thức sau dưới dạng đa thức
a) (2a - b)(b + 4a) + 2a(b - 3a);
b) (3a - 2b)(2a - 3b) - 6a(a - b);
c) 5b(2x - b) - (8b - x)(2x - b);
d) 2x(a + 15x) + (x - 6a)(5a + 2x);
Bài 3: Chứng minh rằng các biểu thức sau không phụ thuộc vào biến
a) (y - 5)(y + 8) - (y + 4)(y - 1); b) y4 - (y2 - 1)(y2 + 1);
bài 1:phân tích đa thức thành nhân tử
a,x4 +5x2 +9
b,x4 + 3x2 +4
c,2x4 - x2 -1
Bài 2:tìm x biết
a,(x+1) (x+2)(x+3)(x+4)= 120
b,(x-4x+3)(x2+6x +8) +24