Tìm các giá trị tham số m để phương trình x^2 - 2mx + 2m -1=0 có hai nghiệm x1;x2 sao cho \(\left(x_1^2-2mx+3\right)\left(x_2^2-2mx-2\right)=50\)
Câu 2 : Cho phương trình \(mx^2+2\left(m-2\right)x+m-3=0\left(mlàthamsố\right)\)
\(a)\) Tìm các giá trị của tham số m để phương trình có hai nghiệm trái dấu.
\(b)\) Tìm các giá trị của tham số m để phương trình có hai nghiệm \(x_1;x_2\) thoả mãn : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2.\)
cho phương trình \(x^2-2x+m-1=0\), với m là tham số. Tìm các giá trị của m để phương trinh trên có hai nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)
Cho phương trình:
x2 + ax + b + 2 = 0 (a, b là tham số)
Tìm tất cả giá trị của tham số a, b để phương trình trên có 2 nghiệm phân biệt x1, x2 thoả mãn điều kiện:
\(\left\{{}\begin{matrix}x_1-x_2=4\\x_1^3-x_2^3=28\end{matrix}\right.\)
cho phương trình : \(2x^2-\left(m+3\right)x+m=0\) (1)
a, chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m
b, gọi \(x_1,x_2\) là các nghiệm của phương trình (1).Tìm giá trị nhỏ nhất của biểu thức sau A= trị tuyệt đối của \(x_1-x_2\)
Cho phương trình \(x^2-\left(2m+3\right)x+m=0\)
a) Chứng minh rằng phương trình đã cho có nghiệm với mọi m.
b) goi x1,x2
là các nghiệm của phương trình. tìm m để T=\(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Cho phương trình \(x^2-2\left(m+1\right)x+2m-3=0\) . Tìm các giá trị của m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn biểu thức \(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|\)đạt giá trị nhỏ nhất
Cho phương trình \(x^2-2\left|x\right|+1-4a^2=0\)(x là ẩn số)
Giải phương trình với a=1
Tìm a để phương trình có 4 nghiệm \(x_1,x_2,x_3,x_4\)Khi đó tồn tại hay không giá trị lớn nhất của:S=\(x_1^2+x_2^2+x_3^2+x_4^2\)
Cho phương trình \(x^2-\left(2m-1\right)x+2m-2=0\)
Gọi \(x_1\),\(x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để biểu thức \(A=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.