biết n! = 1.2.3....n (n thuộc N, n\(\ge\)2). chứng tỏ rằng A = \(\frac{1}{2}\)+\(\frac{2}{3}\)+ ....+ \(\frac{2013}{2014}\)< 1
Biết n! = 1.2.3. ... . n ( n \(\in\)N* )
Chứng tỏ rằng:
A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}< 1\)
a, Tính: M = \(1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\)
b, Chứng tỏ: S = \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
Biết n!=1.2.3....n
CMR A=\(\frac{1}{2!}+\frac{2}{3!}+....+\frac{2013}{2014!}< 1\)
a) Cho phân số A=\(\dfrac{2n-3}{n+7}\)
Hỏi có bao nhiêu số tự nhiên n nhỏ hơn 200 để A chưa tối giản.
b) Tìm số tự nhiên n biết:
\(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+....+\(\dfrac{1}{1+2+3+4+...+n}\)=\(\dfrac{200}{101}\)
Giúp với ạ!!!
Cho n! = 1.2.3.....n. Chứng minh A = 1/2! + 2/3! +...+2013/2014! < 1
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
Câu 1: Tìm a để \(\dfrac{5a-17}{4a-23}\) có giá trị lớn nhất.
Câu 2: Cho \(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1998}\) ; m, n \(\in N\) . CMR m \(⋮\) 1999
Câu 3: CMR \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{5}{8}\)
Câu 4: CMR \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{n}{5^{n+1}}+...+\dfrac{11}{5^{12}}< \dfrac{1}{16}\) với n là STN.
Giúp mk với !
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)