Để đồ thị hàm số ( C ) : y = x 3 - 2 x 2 + ( 1 - m ) x + m (m là tham số) cắt trục hoành tại 3 điểm phân biệt có hoành độ là x 1 , x 2 , x 3 sao cho x 1 2 + x 2 2 + x 3 2 < 4 thì giá trị của m là:
A. m < 1
B. m > 1 m < - 1 4
C. - 1 4 < m < 1
D. - 1 4 < m < 1 m ≠ 0
Có đúng một giá trị của tham số m để đồ thị hàm số y = x 3 - 3 x 2 cắt đường thẳng y = 9 x - m tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng với công sai d >0. Hãy tính d
A. d = 1 - 12
B. d = 12
C. d = 11
D. d = 1 + 12
Đường thẳng d : y = x + 4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A(0;4) B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3) Tìm tất cả các giá trị của m thỏa mãn yêu cầu bài toán
A. m=2 hoặc m=3
B. m=-2 hoặc m=3
C. m=3
D. m=-2 hoặc m=-3
Cho hàm số y = x 3 + mx 2 - x + m (Cm). Có bao nhiêu giá trị của m để đồ thị hàm số (Cm) cắt trục Ox tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng
A. 0.
B. 3
C. 1
D. 2
Cho đồ thị hàm số ( C ) : y = x 4 - ( 3 m + 1 ) x 2 + m 2 (m là tham số). Để (C) cắt trục hoành tại bốn phân biệt có hoành độ lập thành cấp số cộng thì giá trị của m là:
A. m > - 1 5
B. m = - 19 3
C. m=3
D. m = 3 , m = - 3 19
Cho hàm số y = 2 x + 3 x + 2 có đồ thị (C) và đường thẳng d: y = x + m Các giá trị của tham số m để đường thẳng (C) cắt đồ thị tại hai điểm phân biệt là:
A. m > 2
B. m > 6
C. m = 2
D. m < 2 hoặc m > 6
Cho hàm số ( C ) : y = x + 1 - x + 3 . Gọi I là giao điểm của hai tiệm cận của đồ thị hàm số (C). Đường thẳng d : y = x + m cắt (C) tại hai điểm phân biệt A, B tạo thành tam giác ABI có trọng tâm nằm trên (C). Có hai giá trị của m thoả mãn yêu cầu bài toán. Tổng hai giá trị của m là:
A. 0
B. 2
C. –8
D. –10
Biết đồ thị (C) của hàm số y = 2 x + 1 x + 2 luôn cắt đường thẳng (d): y = -x + m tại hai điểm phân biệt A, B.Tìm giá trị của tham số m để độ dài đoạn AB là ngắn nhất.
B. m = 1
C. m = 0
D. m = 4
Tìm tất cả các giá trị của tham số m để đường thẳng y = ( m - 1 ) x cắt đồ thị hàm số y = x 3 - 3 x 2 + m + 1 tại 3 điểm phân biệt A, B, C sao cho AB=BC
A. m ∈ ( - ∞ ; 0 ] ∪ [ 4 ; + ∞ )
B. m ∈ ( - 5 4 ; + ∞ )
C. m ∈ ( - 2 ; + ∞ )
D. m ∈ ℝ