Biết 1 + (1-i) + 1 - i 2 + . . . + 1 - i 10 = a + b i ( a , b ∈ ℝ ) Tìm a,b.
A. a = 32 b = - 32
B. a = - 32 b = 32
C. a = 33 b = - 32
D. a = 32 b = - 33
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(i+1) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Biết 1 + i + i 2 + . . . . + i 100 = a + b i ( a , b ∈ ℝ ) . Tìm a,b.
A . a = 0 b = 1
B . a = 1 b = 0
C . a = 1 b = 1
D . a = - 1 b = - 1
Cho số phức z = a + bi, (a, b ∈ ℝ ) thỏa mãn z + 1 + 3i - |z|i = 0. Tính S = a + 3b
A. S = 7 3
B. S = -5
C. S = 5
D. S = - 7 3
Cho số phức \(z=1-i+i^3\) . Tìm phần thực a và phần ảo b của z:
A: a=1,b=0
B: a=0,b=1
C: a=1,b=-2
D: a=-2,b=1
Cho số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 1 z - i = 1 và z - 3 i z + i = 1 .Tính P=a+b.
A. P=7
B. P=-1
C. P=1
D. P=2
Cho số phức z=1+i. Biết rằng tồn tại các số phức z 1 = a + 5 i , z 2 = b
(trong đó a , b ∈ ℝ , b > 1 ) thỏa mãn 3 z - z 1 = 3 z - z 2 = z 1 - z 2 .
Tính b-a.
A.
B.
C.
D.
Bài 1: Cho hai điểm A(1;3;5), B(1;-1;1), khi đó trung điểm I của AB có tọa độ là:
A. I(0;-4;-4).
B. I(2;2;6).
C. I(0;-2;-4).