Bấm máy Casio là ra.
x = 0,5
y = 0,1
z = 1,7
\(\(\{\begin{matrix} x+y+2z=4 \\ 2x-y+3z=6 \\ x-3y+4z=7 \end{matrix}\)\) Bấm máy Casio là ra.
x = 0,5
y = 0,1
z = 1,7
Bấm máy Casio là ra.
x = 0,5
y = 0,1
z = 1,7
\(\(\{\begin{matrix} x+y+2z=4 \\ 2x-y+3z=6 \\ x-3y+4z=7 \end{matrix}\)\) Bấm máy Casio là ra.
x = 0,5
y = 0,1
z = 1,7
Gọi (xo;yo;zo) là nghiệm của hệ \(\{\begin{matrix} x+y+2z=4 \\ 2x-y+3z=6 \\ x-3y+4z=7 \end{matrix}\)
Khi đó xo+yo+zo= ...?
giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-3x=4-y\\y^3-3y=6-2z\\z^3-3z=8-3x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=2\\2x-y+2z=7\\x+2y+3z=5\end{matrix}\right.\)
Tìm x,y,z thỏa mãn hệ sau:
\(\left\{{}\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)
..
\(\left\{{}\begin{matrix}2x+5y=8\\2x-3y=0\end{matrix}\right.\)
..
\(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
Giải hpt
a)\(\left\{{}\begin{matrix}\dfrac{4}{2x-3y}+\dfrac{5}{3x+y}=-2\\\dfrac{3}{3x+y}-\dfrac{5}{2x-3y}=21\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=\dfrac{9}{2}\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
Giải hệ\(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)