ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\)
\(xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)^2+\sqrt{x}-\sqrt{y-1}=0\)
\(\Leftrightarrow\left(y-1\right)\left(x-y+1\right)+\dfrac{x-y+1}{\sqrt{x}+\sqrt{y-1}}=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(y-1+\dfrac{1}{\sqrt{x}+\sqrt{y-1}}\right)=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Rightarrow y=x+1\)
Thay xuống pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+\left(7-x-3\sqrt{5-x}\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow...\)