ĐKXĐ: \(5x^2+2x-3>=0\)
=>\(5x^2+5x-3x-3>=0\)
=>\(\left(x+1\right)\left(5x-3\right)>=0\)
TH1: \(\left\{{}\begin{matrix}x+1>=0\\5x-3>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-1\\x>=\dfrac{3}{5}\end{matrix}\right.\)
=>\(x>=\dfrac{3}{5}\)
TH2: \(\left\{{}\begin{matrix}x+1< =0\\5x-3< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =-1\\x< =\dfrac{3}{5}\end{matrix}\right.\)
=>\(x< =-1\)
\(\left(x+1\right)\cdot\sqrt{5x^2+2x-3}=5x^2+4x-5\)
=>\(\left(x+1\right)\sqrt{5x^2+2x-3}=5x^2+2x-3+2x-2\)
=>\(\left(x+1\right)\sqrt{5x^2+2x-3}-\left(5x^2+2x-3\right)-\left(2x-2\right)=0\)
=>\(\sqrt{5x^2+2x-3}\left(x+1-\sqrt{5x^2+2x-3}\right)-2\left(x-1\right)=0\)
=>\(\sqrt{5x^2+2x-3}\cdot\dfrac{\left(x+1\right)^2-\left(5x^2+2x-3\right)}{x+1+\sqrt{5x^2+2x-3}}-2\left(x-1\right)=0\)
=>\(\sqrt{5x^2+2x-3}\cdot\dfrac{x^2+2x+1-5x^2-2x+3}{x+1+\sqrt{5x^2+2x-3}}-2\left(x-1\right)=0\)
=>\(\dfrac{\sqrt{5x^2+2x-3}}{x+1+\sqrt{5x^2-2x+3}}\cdot\left(-4x^2+4\right)-2\left(x-1\right)=0\)
=>\(\dfrac{2\sqrt{5x^2+2x-3}}{x+1+\sqrt{5x^2-2x+3}}\cdot\left(x^2-1\right)+\left(x-1\right)=0\)
=>\(\dfrac{2\sqrt{5x^2+2x-3}\cdot\left(x+1\right)\left(x-1\right)}{x+1+\sqrt{5x^2-2x+3}}+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(\dfrac{2\sqrt{5x^2+2x-3}\cdot\left(x+1\right)}{x+1+\sqrt{5x^2-2x+3}}+1\right)=0\)
=>x-1=0
=>x=1(nhận)