Bài 8. Cho tam giác ABC, lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho BD=CE. Gọi I, K, M theo thứ tự là trung điểm của BE và CD, BC a) Chứng minh tam giác IMK cân. b) Gọi giao điểm của IK với AB và AC theo thứ tự là G, H. Chứng minh AG=AH. c) Gọi N là trung điểm của DE. Gọi P và Q theo thứ tự là giao điểm của MN với AB và AC. Chứng minh tam giác APQ cân
a: Xét ΔBEC có
I là trung điểm của BE
M là trung điểm của BC
Do đó: IM là đường trung bình của ΔBEC
Suy ra: \(IM=\dfrac{EC}{2}\left(1\right)\)
Xét ΔDCB có
K là trung điểm của DC
M là trung điểm của BC
Do đó: KM là đường trung bình của ΔDCB
Suy ra: \(KM=\dfrac{BD}{2}\)
mà BD=CE
nên \(KM=\dfrac{CE}{2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra IM=KM