a: Xét ΔMAB và ΔMCD có
MA=MC
MB=MD
AB=CD
=>ΔMAB=ΔMCD
b: Xét ΔMAC có MA=MC nên ΔMAC cân tại M
ΔMAB=ΔMCD
=>góc MAB=góc MCD
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
a: Xét ΔMAB và ΔMCD có
MA=MC
MB=MD
AB=CD
=>ΔMAB=ΔMCD
b: Xét ΔMAC có MA=MC nên ΔMAC cân tại M
ΔMAB=ΔMCD
=>góc MAB=góc MCD
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
Bài 13: Cho ABC có AB = 6cm BC = 8 cm; AC = 10 cm; Tia phân giác của góc A cắt cạnh BC tại M; trên cạnh AC lấy điểm N sao cho AB = AN
a) ABC là tam giác gì ? Vì sao ? b) Chứng minh MN AC
c)Chứng minh AM là đường trung trực của đoạn thẳng BM
d*) Qua C kẻ đường thẳng song song với NB cắt tia AB tại T. Chứng minh 3 điểm T; M; N thẳng hàng
Cho tam giác ABC có AC<AB,Trên cạnh AC lấy điểm D sao cho CD=AB,đường trung trực của BD cát trung trực của Ac tại O
Chứng minh:
a) tam giác OIC=tam giác OIA
b) Ao là tia phân giác của Góc BAC(Vs T là trung điểm của Ac)
1.Cho tam giác ABC có AB=AC ;tia phân giác của góc BAC cắt BC tại D .C hứng minh rằng AD là đường trung trực của đoạn thẳng BC
2.Cho tam giác ABC.Đường thẳng qua A và song song với AB ở D. Chứng minh rằng AB= CD ;BC=AD
3. Cho tam giác ABC vuongở A .Gọi M là trung điểm của cạnh AC,D là điểm trên nửa mặt phẳng bờ là AC không chứa B sao cho góc MCD=90độ và CD=AB.Chứng minh M là trung điểmcủa đoạn thẳng BD
(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)
Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh :
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh : A,O,M thẳng hàng.
Câu 2 :
Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E.
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)
Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh:
a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.
Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC
Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng:
a) Góc AMB < góc AMC
b) Góc MAB > góc CAM
c) Góc ADB < góc ADC
d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
a) BC > CE; CE ⊥ AC
b) Góc ABM > góc MBC
Cho tam giác ABC có AB < AC, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh AB = CD, AB // CD.
b) So sánh M A B ^ và M A C ^ .
c) So sánh A M B ^ và A M C ^ .
cho tam giác ABC vuông tại A có AB lớn hơn AC,BD là đường phân giác .DM vuông góc BC tại M.
a,chứng minh:tam giác DAB=tam giác DMB
b,BD là đường trung trực của AM
c,tam giác BAM,tam giác DAM là tam giác gì?vì sao?
d,so sánh AD và AC
1. Cho tam giác ABC cân tại đỉnh A trung trực của cạnh AC cắt CB tại điểm D (D nằm ngoài đoạn BC) trên tia đối tia AD lấy E sao cho AE=BD chứng minh tam giác DCE cân gợi ý cần chứng minh CD=CE
2.cho tam giác ABC có AB < AC lấy điểm E trên cạnh CA sao cho CE=BA các đường trung trực của các đoạn thẳng BE và CA cắt nhau ở I a) chứng minh tam giác AIB=tam giác CIE
b) chứng minh tam giác AI là tia phân giác của góc BAC
Giups mk với !