a) Ta có: D và H đối xứng nhau qua AB(gt)
nên AB là đường trung trực của DH
hay AH=AD(1)
Ta có: H và E đối xứng nhau qua AC(gt)
nên AC là đường trung trực của EH
hay AE=AH(2)
Từ (1) và (2) suy ra AD=AE
hay ΔDAE cân tại A
a) Ta có: D và H đối xứng nhau qua AB(gt)
nên AB là đường trung trực của DH
hay AH=AD(1)
Ta có: H và E đối xứng nhau qua AC(gt)
nên AC là đường trung trực của EH
hay AE=AH(2)
Từ (1) và (2) suy ra AD=AE
hay ΔDAE cân tại A
Bài 7.Cho tam giác ABC, kẻ đường cao AH, Gọi D và E theo thứ tự là các điểm đối xứng
với H qua AB và AC, đường thẳng DE cắt AB, AC lần lượt tại M, N. Chứng minh:
a) tam giác DAE cân
b) HA là phân giác góc MHN
c) Ba đường thẳng BN, CM, AH thẳng hàng
d) BN, CM là các đường cao của tam giác ABC
help em ;-;
cho tam giác ABC nhọn . Kẻ đường cao AH .Gọi D,E theo thứ tự là các điểm đối xứng của điểm H qua các cạnh AB , AC . Đường thẳng DE căt AB , AC lần lượt tại M,N a) CM tam giác DAE cân
b) CM HA là tia phân giác góc MHN
c) MC là phân giác góc NMH
d) Ba đường thẳng BN, CM , AH đồng quy
e) BN và CM là các đường cao của tam giác ABC
Bài 1*: Cho tam giác ABC. Kẻ đường cao AH. Gọi D,E theo thứ tự là các điểm đối xứng của điểm H qua các cạnh AB, AC. Đường thẳng DE cắt AB,AC lần lượt tại M,N. Chứng minh:
1. Tam giác DAE là tam giác cân.
2. HA là phân giác của góc MHN.
3. Ba đường thẳng BN,CM và AH đồng quy.
4. BN,CM là các đường cao của tam giác ABC.
Cho tam giác ABC đường cao AH. Gọi D và E là điểm đối xứng của H qua AB và AC. Đường thẳng DF cắt AC, AD tại M,N. C/M
a) Tam giác DAE cân
b) HA là phân giác của góc MHN
c) Ba đường thẳng BN,CM,AH đồng qui
d) BN và Cm là các đường cao của tam giác ABC
Cho tam giác ABC có góc A = 70. Đường cao AH. Gọi D, E theo thứ tự là các điểm đối xứng với của H qua AB và AC. Đường thẳng DE cắt AB, AC lần lượt tại M, N.
a) Chứng minh tam giác ADE cân
b) Tính góc ADE
c) Chứng minh AH là phân giác góc MHN
d) Chứng minh 3 đường thẳng BN, CM, AH đồng quy
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K. a) cm: Tam giác ABC ~ Tam giác EFC b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK c) Gọi G là giao điểm của CH và AB ,cm: AH/HE + BH/HF + CH/HG > 6
Tam giác ABC có góc A = 70 độ, đường cao AH, D và E đối xứng với H qua AB, AC. DE cắt AB, AC tại M,N.
a) Chứng minh: tam giác DAE cân. Tính góc DAE.
b) Chứng minh: AH là phân giác góc MHN.
c) Chứng minh 3 đường BN, CM, AH đồng quy.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường
vuông góc kẻ từ H đến AB, AC.
1) Chứng minh: AH = DE
2) Từ D và E lần lượt kẻ các đường thẳng vuông góc với DE, hai đường thẳng này cắt cạnh BC
lần lượt tại M và N. Chứng minh M và N lần lượt là trung điểm của BH và HC.
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K.
a) cm: Tam giác ABC ~ Tam giác EFC
b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK
c) Gọi G là giao điểm của CH và AB ,cm:
AH/HE + BH/HF + CH/HG > 6