a: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
b: Vì ABCD là hình bình hành
nên AC và BD cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của BD
hay B và D đối xứng nhau qua O
a: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
b: Vì ABCD là hình bình hành
nên AC và BD cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của BD
hay B và D đối xứng nhau qua O
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
cíu zới mn ưi : Cho tam giác ABC. Gọi M là trung điểm của BC. Qua A kẻ đường thẳng song song với BC , qua M kẻ đường thẳng song song với AB , hai đường thẳng này cắt nhau tại N. a) Chứng minh tứ giác ABMN là hình bình hành. b) Gọi O là trung điểm của AM. Chứng minh: B O N, thẳng hàng
Cho tam giác ABC vuông tại A ( AB > AC ). Gọi I là trung điểm của AB. Từ B kẻ đường thẳng song song với CA, cắt đường thẳng CI tại D.
a) Chứng minh BD = AC và tứ giác ACBD là hình bình hành.
b) Gọi E là điểm đối xứng với D qua B. Tứ giác ABEC là hình gì? Vì sao?
c) Gọi M là giao điểm của AE và BC. MI cắt AD tại K. Chứng minh tứ giác AKBM là hình thoi.
Giúp mình với ạ mình đang cần gấp lắm á huhuu :<<
Cho tam giác ABC vuông tại A ( AB < Ac ) có I là trung điểm của cạnh AC. Qua c kẻ đường thẳng song song với đường thằng AB, đường thằng này cắt tia BI tại D.
a) Chứng mình tam giác ABI = tam giác CDI và suy ra tứ giác ABCD là hình bình hành
b) Qua I kẻ đường thẳng IK // AB ( K thuộc BC ). Gọi H là chân đường vuông góc hạ từ K xuống cạnh AB. Chứng minh AK = IH
c) Gọi G là giao điểm của AK và BD. Chứng mình H,G,C thẳng hàng
. Cho tam giác ABC vuông tại A có AC = 2AB. Lấy M làm trung điểm của AC. Qua M kẻ đường thẳng song song với AB, qua B kẻ đường thẳng song song với AC, chúng cắt nhau tại N.
a) Chứng minh: Tứ giác AMNB là hình vuông.
b) Chứng minh: Tứ giác BMCN là hình bình hành.
c) Lấy điểm K đối xứng với B qua N. Chứng minh: 3 đường thẳng AK, BC và MN đồng quy.
d) Kẻ AH vuông góc với BC, BM cắt AH và AK lần lượt tại E và F. Chứng minh: Tứ giác AENF là hình thoi.
giúp mình câu d với ạ, mình cần gấp
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Qua M kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại K
a. Chứng minh rằng tứ giác AKMN là hình chữ nhật.
b. Điểm E đối xứng với M qua K, Q đối xứng với M qua N. Chứng minh rằng E,A,Q thẳng
Tam giác ABC cân tại A , trung tuyến AM . Qua M kẻ đường thẳng song song với AC cắt AB tại P và đường thẳng song song với AB cắt AC tại Q.
a) Tứ giác APMQ là hình gì? Tại sao?
b) Chứng minh PQ// BC
c) Gọi D là điểm đối xứng với M quaQ. Chứng minh tứ giácADMB là hình bình hành;
d) Tìm điều kiện của tam giác ABC để tứ giác ADCM là hình vuông?
Cho tam giác abc vuông tại a gọi m là trung điểm của BC Ê Qua M kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại K A: Chứng minh rằng tứ giác AKMN là hình chữ nhật B: điểm E đối xứng ảnh với M qua K, Q đối xứng với M qua N chứng minh rằng E, A, Q thẳng hàng
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.