a: XétΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó:ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
c: BD=CD=8/2=4(cm)
nên AD=3(cm)
a: XétΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó:ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
c: BD=CD=8/2=4(cm)
nên AD=3(cm)
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.
a) Tính độ dìa AC khi AB= 9cm, BC= 15cm
b) Chứng minh: Tam giác ABD=tam giác EBD
c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân
d) Chứng minh: AD<DC
Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D
a) Tính độ dài BC?
b) Chứng minh rằng: Tam giác ABF=tam giác CDF
c) Chứng minh: BF<(AB+BC):2
Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 9cm, AC= 12cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh: Tam giác KDC cân
d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 3cm, AC= 4cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh \(Dh\perp BC\)
d) So sánh DH với DK
cho tam giác abc cân tại a(góc a<90) vẽ tia phân giác ad của góc a(d thuộc bc) chứng minh tam giác abd= tam giác acd vẽ dường trung tuyến cf của tam giác abc cắt ad tại g chứng minh g là trọng tâm của tam giác abc gọi h là trung điểm của cạnh dc qua h vẽ đường thẳng vuông góc với cạnh dc cắt cạnh ac tại e chứng minh tam giác dec cân chứng minh ba điểm b,g,e thẳng hàng
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Bài 4.Cho tam giác ABC cân tại A, đường cao AH ( H thuộc BC ).
a, Chứng minh rằng tam giác ABC=tam giác AHC
b, Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD=DH
c, Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng.
d, Chứng minh chu vi tam giác ABC>AH+3GB
help me
Cho tam giác ABC cân tại A, đường cao AH. Từ H kẻ đường thẳng Hx song song với AC, Hx cắt AB tại D.
1. Chứng minh tam giác ADH cân và D là trung điểm của AB.
2. Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng và tính hiệu độ dài
AG – GH biết rằng AC = 10cm, HC = 6cm.
3. Gọi p là chu vi tam giác ABC. Chứng minh p > AH + 3BG.
Cho tam giác ABC cân tại A, đường cao AH. Từ H kẻ đường thẳng Hx song song với AC, Hx cắt AB tại D. 1. Chứng minh tam giác ADH cân và D là trung điểm của AB. 2. Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng và tính hiệu độ dài AG – GH biết rằng AC = 10cm, HC = 6cm. 3. Gọi p là chu vi tam giác ABC. Chứng minh p > AH + 3BG.
ko cop mạng và vẽ hình nha
Cho tam giác ABC vuông tại A có AB= 5cm, BC= 10cm
a) TÍnh độ dài AC
b) Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. Chứng minh tam giác ABD= tam giác EBD và AE vuông góc với BD
c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC = tam giác AFC
d) Gọi G là trung điểm của FC. Chứng minh ba điểm B,D,G thẳng hàng
Câu 1:Cho ΔABC vuông tại A, đường trung tuyến CM.a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC. Chứng minh rằng ΔMAC = ΔMBD và AC = BD.c) Chứng minh rằng AC + BC > 2CM.d) Gọi K là điểm trên đoạn thẳng AM sao cho AM32AK=. Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID
Câu 2;Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm.a) Tính độ dài AC.b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh ΔABD = ΔEBD và BDAE⊥.c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC.d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
Bài tập 8: Trên đường trung tuyến AD của tam giác ABC, lấy hai điểm I và G sao cho AI = IG = GD. Gọi E là trung điểm của AC. 1. Chứng minh B, G, E thẳng hàng và so sánh BE và GE. 2. CI cắt GE tại O. điểm O là gì của tam giác ABC. chứng minh BE = 9OE.