a: Xét ΔAMB và ΔAMC có
AM chung
góc MAB=góc MAC
AB=AC
=>ΔAMB=ΔAMC
b: Xét ΔMAB và ΔMNC có
góc AMB=góc NMC
MB=MC
góc ABM=góc NCM
=>ΔMAB=ΔMNC
=>AB=NC
c: ΔMAB=ΔMNC
=>MA=MN
=>AM=1/2AN
a: Xét ΔAMB và ΔAMC có
AM chung
góc MAB=góc MAC
AB=AC
=>ΔAMB=ΔAMC
b: Xét ΔMAB và ΔMNC có
góc AMB=góc NMC
MB=MC
góc ABM=góc NCM
=>ΔMAB=ΔMNC
=>AB=NC
c: ΔMAB=ΔMNC
=>MA=MN
=>AM=1/2AN
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M
a) Chứng minh ∆ A M B = ∆ A M C .
b) Kẻ M E ⊥ A B ( E ∈ A B ) , M F ⊥ A C ( F ∈ A C ) . Chứng minh tam giác AEF cân.
c) Chứng minh A M ⊥ E F .
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I Chứng minh BE = BI
Đề bài: Cho ΔABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a) Chứng minh: ΔAMB = ΔAMC
b) Kẻ ME ⊥ AB (E∈AB), MF ⊥ AC (F∈AC). Chứng minh ΔAEF cân
c) Chứng minh: AM ⊥ EF
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I. Chứng minh: BE=BI
(Các bạn chứng minh chi tiết giúp mik vs ạ)
Cho tam giác ABC có AB AC. Tia phân giác góc BAC cắt BC tại M.a Chứng minh tam giác AMB tam giác AMCb Kẻ ME vuông góc AB, MF vuông góc AC. Chứng minh ME MFc Chứng minh AM vuống góc EFd Qua B vẽ đường thẳng song song với AC cắt FM tại I. Chứng minh BE BI
Bài 5:(2,5đ) Cho △ABC cân tại.A. Gọi M là trung điểm của BC a) Chứng minh: △AMB = △AMC. b) (TH)Trên cạnh AB lấy điểm D ( DA > DB). Qua D vẽ đường thẳng song song với BC cắt AC tại E. Chứng minh: △ADE cân. c) Qua C vẽ đường thẳng song song với ME cắt tia AM tại K. Chứng minh: DM ⫽ BK.
Bài 5:(2,5đ) Cho △ABC cân tại.A. Gọi M là trung điểm của BC a) Chứng minh: △AMB = △AMC. b) (TH)Trên cạnh AB lấy điểm D ( DA > DB). Qua D vẽ đường thẳng song song với BC cắt AC tại E. Chứng minh: △ADE cân. c) Qua C vẽ đường thẳng song song với ME cắt tia AM tại K. Chứng minh: DM ⫽ BK.
Bài 5:(2,5đ) Cho △ABC cân tại.A. Gọi M là trung điểm của BC a) Chứng minh: △AMB = △AMC. b) (TH)Trên cạnh AB lấy điểm D ( DA > DB). Qua D vẽ đường thẳng song song với BC cắt AC tại E. Chứng minh: △ADE cân. c) Qua C vẽ đường thẳng song song với ME cắt tia AM tại K. Chứng minh: DM ⫽ BK.
#Toán lớp 7Bài 7(2,5đ). Cho tam giác ABC cân tại A (góc A nhọn, AB >BC). Gọi M là trung điểm của BC.
a) Chứng minh: AMB = AMC
b) Gọi I là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia MI tại D. Chứng mminh: AD = MC
c) CD lần lượt cắt AB, AM tại S và E. Chứng minh BC <3AS
cần giải câu c
Bài 5:(2,5đ) Cho △ABC vuông tại.A. Trên tia đối tia AB lấy điểm D sao cho AD = AB
a) Chứng minh: △ABC = △ADC
b) Từ A kẻ đường thẳng song song với BC cắt CD tại M. Chứng minh: MA = MC
c) Chứng minh: MA=1/2 CD
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác AMB = tam giác AMC.
b) Kẻ ME vuông góc AB (E thuộc AB), MF vuông góc AC (F thuộc AC). Chứng minh tam giác MEF cân.
c)Chứng minh AM vuông góc EF
d)Kẻ EI vuông góc với BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. Chứng minh A là trung điểm của KF
Vẽ thêm hình nữa nhé