Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
koroba

Bài 5. Cho tam giác ABC cân tại A có AH đường cao (H BC  ) . Lấy điểm E thuộc cạnh AB, F
lượt thuộc cạnh AC sao cho BE = CF.
a) Chứng minh hai điểm E, F đối xứng với nhau qua AH;
b) Gọi O là giao điểm của EF với AH. Các tia BO, CO cắt AC, AB lần lượt ở I và K.
Chứng minh EK = IF.
 

Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 11:24

\(a,\left\{{}\begin{matrix}BE=CF\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\Rightarrow\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\left(Ta-lét.đảo\right)\\ \Rightarrow AH\perp EF.tại.O\left(1\right)\)

Tam giác ABC cân tại A có AH là đường cao cũng là trung tuyến 

Áp dụng hệ quả Ta-lét: \(\left\{{}\begin{matrix}\dfrac{EO}{BH}=\dfrac{AO}{AH}\\\dfrac{AO}{AH}=\dfrac{OF}{HC}\end{matrix}\right.\Rightarrow\dfrac{EO}{BH}=\dfrac{OF}{HC}\)

Mà \(BH=HC\left(AH.trung.tuyến\right)\Rightarrow EO=OF\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\) E đối xứng F qua AH

\(b,\Delta BOC\) có \(OH\) vừa là đường cao vừa là trung tuyên nên là tam giác cân

\(\Rightarrow OB=OC;\widehat{OBC}=\widehat{OCB}\\ \Rightarrow\widehat{ABC}-\widehat{OBC}=\widehat{ACB}-\widehat{OCB}\left(\Delta ABC.cân.tại.A\right)\\ \Rightarrow\widehat{KBO}=\widehat{ICO}\)

\(\left\{{}\begin{matrix}OB=OC\left(cm.trên\right)\\\widehat{KBO}=\widehat{ICO}\left(cm.trên\right)\\\widehat{KOB}=\widehat{IOC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta BOK=\Delta COI\left(g.c.g\right)\\ \Rightarrow BK=CI\\ \Rightarrow BK-BE=CI-CF\left(BK=CF.do.giả.thiết\right)\\ \Rightarrow EK=FI\)

 


Các câu hỏi tương tự
Lê Gia Hưng
Xem chi tiết
Quách Đắc Lộc
Xem chi tiết
lê minh
Xem chi tiết
John Nguyễn
Xem chi tiết
Trần Linh Trang
Xem chi tiết
Hoàng Anh Tú
Xem chi tiết
Hường
Xem chi tiết
Nguyễn Hữu Tuân
Xem chi tiết
Tố Quyên
Xem chi tiết