b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔCEB\(\sim\)ΔCDA
Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
hay \(CD\cdot CB=CE\cdot CA\)
b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔCEB\(\sim\)ΔCDA
Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
hay \(CD\cdot CB=CE\cdot CA\)
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại K. Gọi I là trung điểm AH
1) Gọi M là trung điểm BC, kẻ đường kính AP. Chứng minh M là trung điểm của HP.
2) Chứng minh BH/BA + CH/CA = EF/KA.
3) Gọi S là giao điểm của hai đường thắng OI và MK. Chứng minh AS song song với BC.
Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB ^ , ABC ^ , BCA ^ đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
1) Chứng minh tứ giác AEHF nội tiếp đường tròn.
2) Chứng minh CE.CA = CD.CB.
cho tam giác ABC, có ba góc nhọn, AB<AC. kẻ các đường cao AD,BE,CF cắt nhau tại H.
a) chứng minh: góc BAD bằng góc FEB
b) chứng minh: DA là phân giác của góc EDF, từ đó suy ra H cách đều EF,FD, ED
c) gọi S là giao điểm AD vả EF, chứng minh:tích của SH và AD bằng tích của AS và HD
d) gọi J,M lần lượt là trung điểm AH, BH , chứng minh JE,MD cùng cách đều một điểm
Cho tam giác ABC nhọn nội tiếp (O) (AB<AC), 2 đường cao BE và CF cắt nhau tại H. Tia BE cắt (O) tại M (M khác B) , tia CF cắt (O) tại N (N khác C).
a) chứng minh CM=CH
b) MN cắt AB và AC lần lượt tại P và Q. gọi R là giao điểm của MN và BC. chứng minh RN . RM = RP . RQ
c) Tia AH cắt BC tại D, gọi K là trung điểm của AC. chứng minh: KEFD nội tiếp
d) đường tròn ngoại tiếp tam giác BDF cắt (O) tại T (T khác B). chứng minh H, K, T thẳng hàng.
Xin các cao thủ võ lâm giúp em giải bài này
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O). Đường tròn đường kính AB cắt BC, AC lần lượt tại D và E. Gọi H là giao điểm của AD và BE
a\Chứng minh tứ giác CEHD nội tiếp
b\Đường thẳng qua E và vuông góc với AB cắt AD tại L. F là giao điểm CH và AB. Chứng minh AL×AB= Ah×AF
C\ Gọi S là giao điểm của OA và EL, M là Trung điểm của SH. Chứng minh M,E,F thẳng hàng
cho tam giác ABC nhọn nội tiếp đường tròn (O), các đường cao BE và CF cắt nhau tại H. Gọi AD là đường kính của đường tròn (O).
a) chứng minh 4 điểm B, C, E, F cùng thuộc 1 đường tròn. xác định tâm I của đường tròn này
b) chứng minh I là trung điểm của HD
c) gọi P, N, Q lần lượt là trung diểm cua AB, AH,AC. Chứng minh PNQO là hình bình hành và S(BHCD)= 4*S(PNQO)
giải giúp mình ý 2 câu c thôi
BÀI 4. Cho tam giác ABC, đường phân giác của góc B và đường phân giác của C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E, F.
a) Chứng mình BEI, CFI là các tam giác cân.
b) Chứng minh BE + CF = EF.
c) Gọi M là trung điểm của IB, N là trung điểm của IC, các đường thẳng EM, FN cắt nhau tại O. Chứng minh OB = OC.
d) Chứng minh ba điểm A, I, O thẳng hàng.
Cho tam giác Abc có ba góc nhọn các đường cao AD,BE,Cf cắt nhau tại H
a)chứng minh Tam giac AEF đồng dạng với Tam giác ABC
b)Chứng minh rằng AH/AD+BH/BE+Ch/CF=2
c)AD/HD+BE/HE+CF/HF>=9
d)Đường thăng qua A vuông góc È cắt HM ở K(M là trung điểm của BC)
CHuwngsminh K đối xứng với H qua M
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O) và AB < AC. Các đường cao AD, BE, CF của tam giác ABC gặp nhau tại H. Gọi I là giao điểm hai đường thẳng EF và CB. Đường thẳng AI cắt (O) tại M (M khác A).
a. Chứng minh năm điểm A, M, F, H, E cùng nằm trên một đường tròn.
b. Gọi N là trung điểm của BC. Chứng minh ba điểm M, H, N thẳng hàng.
c. Chứng minh BM.AC + AM.BC = AB.MC