a) (x² + 2)²
= (x²)² + 2.x².2 + 2²
= x⁴ + 4x² + 4
b) (x + y + z)²
= [(x + y) + z]²
= (x + y)² + 2(x + y).z + z²
= x² + 2xy + y² + 2xz + 2yz + z²
= x² + y² + z² + 2xy + 2xz + 2yz
a,
(\(x^2\) + 2)2
= (\(x^2\))2 + 2.\(x^2\).2 + 22
= \(x^4\) + 4\(x^2\) + 4
b, (\(x\) + \(y\) + z)2
= (\(x\) + y)2 + 2(\(x+y\))z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
a) \(\left(x^2+2\right)^2=\left(x^4+4x^2+4\right)\)
b) \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\)